11 research outputs found

    Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin

    Get PDF
    1. As more and more species face anthropogenic threats, understanding the causes of population declines in vulnerable taxa is essential. However, long-term datasets, ideal to identify lasting or indirect effects on fitness measures such as those caused by environmental factors, are not always available. 2. Here we use a single year but multi-population approach on populations with contrasting demographic trends to identify possible drivers and mechanisms of seabird population changes in the north-east Atlantic, using the Atlantic puffin, a declining species, as a model system. 3. We combine miniature GPS trackers with camera traps and DNA metabarcoding techniques on four populations across the puffins’ main breeding range to provide the most comprehensive study of the species' foraging ecology to date. 4. We find that puffins use a dual foraging tactic combining short and long foraging trips in all four populations, but declining populations in southern Iceland and north-west Norway have much greater foraging ranges, which require more (costly) flight, as well as lower chick-provisioning frequencies, and a more diverse but likely less energy-dense diet, than stable populations in northern Iceland and Wales. 5. Together, our findings suggest that the poor productivity of declining puffin populations in the north-east Atlantic is driven by breeding adults being forced to forage far from the colony, presumably because of low prey availability near colonies, possibly amplified by intraspecific competition. Our results provide valuable information for the conservation of this and other important North-Atlantic species and highlight the potential of multi-population approaches to answer important questions about the ecological drivers of population trends. biologging, diet, DNA metabarcoding, dual foraging, foraging ecology, intraspecific competition, population decline, seabirdspublishedVersio

    Co‐developing guidance for conservation: An example for seabirds in the North‐East Atlantic in the face of climate change impacts

    Get PDF
    Conservation guidance—an authoritative source of information and recommendations explicitly supporting decision-making and action regarding nature conservation—represents an important tool to communicate evidence-based advice to conservation actors. Given the rapidly increasing pressure that climate change poses to biodiversity, producing accessible, well-informed guidance on how to best manage the impacts and risks of changing climatic conditions is particularly urgent. Guidance documents should ideally be produced with multistage input from stakeholders who are likely to use and implement such advice; however, this step can be complicated and costly, and remains largely unformalized. Moreover, there is currently little direct evidence synthesized for actions that specifically target climate change and guidance remains largely absent. Here, we introduce a process for co-developing guidance for species conservation in the face of climate change, using seabirds in the North-East Atlantic as a case study. Specifically, we collated evidence on climate change vulnerability and possible conservation actions using literature synthesis, stakeholder surveys, and ecological modeling. This evidence base was then discussed, refined, and expanded using structured stakeholder workshops. We summarize the knowledge gained through stakeholder engagement and provide recommendations for future international efforts to co-produce conservation guidance for managing wildlife, in the context of a rapidly changing climate.info:eu-repo/semantics/publishedVersio

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of 6 pelagic seabird species (little auk Alle alle, Atlantic puffin Fratercula arctica, common guillemot Uria aalge, Brünnich’s guillemot U. lomvia, black-legged kittiwake Rissa tridactyla and northern fulmars Fulmarus glacialis). We analysed an extensive geolocator positional and saltwater immersion dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the saltwater immersion data of geolocators to infer bird activity. We found that the 6 species had, on average, 3 to 4 migration periods and 2 to 3 distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a ‘fly-and-forage’ migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling.publishedVersio

    Co-developing guidance for conservation: an example for seabirds in the North-East Atlantic in the face of climate change impacts

    Get PDF
    Conservation guidance—an authoritative source of information and recommendations explicitly supporting decision-making and action regarding nature conservation—represents an important tool to communicate evidence-based advice to conservation actors. Given the rapidly increasing pressure that climate change poses to biodiversity, producing accessible, well-informed guidance on how to best manage the impacts and risks of changing climatic conditions is particularly urgent. Guidance documents should ideally be produced with multistage input from stakeholders who are likely to use and implement such advice; however, this step can be complicated and costly, and remains largely unformalized. Moreover, there is currently little direct evidence synthesized for actions that specifically target climate change and guidance remains largely absent. Here, we introduce a process for co-developing guidance for species conservation in the face of climate change, using seabirds in the North-East Atlantic as a case study. Specifically, we collated evidence on climate change vulnerability and possible conservation actions using literature synthesis, stakeholder surveys, and ecological modeling. This evidence base was then discussed, refined, and expanded using structured stakeholder workshops. We summarize the knowledge gained through stakeholder engagement and provide recommendations for future international efforts to co-produce conservation guidance for managing wildlife, in the context of a rapidly changing climate

    Data from: The chemical basis of a signal of individual identity: Shell pigment concentrations track the unique appearance of Common Murre eggs

    No full text
    In group-living species with parental care, the accurate recognition of one’s own young is critical to fitness. Because discriminating offspring within a large colonial group may be challenging, progeny of colonial breeders often display familial or individual identity signals to elicit and receive costly parental provisions from their own parents. For instance, the Common Murre (or Common Guillemot: Uria aalge) is a colonially breeding seabird that does not build a nest and lays and incubates an egg with an individually unique appearance. How the shell’s physical and chemical properties generate this individual variability in coloration and maculation has not been studied in detail. Here, we quantified two characteristics of the avian-visible appearance of murre eggshells collected from the wild: background coloration spectra and maculation density. As predicted by the individual identity hypothesis, there was no statistical relationship between avian-perceivable shell background coloration and maculation density within the same eggs. In turn, variation in both sets of traits was statistically related to some of their physico-chemical properties, including shell thickness and concentrations of the eggshell pigments biliverdin and protoporphyrin IX. These results illustrate how individually unique eggshell appearances, suitable for identity signaling, can be generated by a small number of structural mechanisms

    Centennial relationships between ocean temperature and Atlantic puffin production reveal shifting decennial trends

    Get PDF
    The current warming of the oceans has been shown to have detrimental effects for a number of species. An understanding of the underlying mechanisms may be hampered by the non-linearity and non-stationarity of the relationships between temperature and demography, and by the insufficient length of available time series. Most demographic time series are too short to study the effects of climate on wildlife in the classical sense of meteorological patterns over at least 30 years. Here we present a harvest time series of Atlantic puffins (Fratercula arctica) that goes back as far as 1880. It originates in the world’s largest puffin colony, in southwest Iceland, which has recently experienced a strong decline. By estimating an annual chick production index for 128 years, we found prolonged periods of strong correlations between local sea surface temperature (SST) and chick production. The sign of decennial correlations switches three times during this period, where the phases of strong negative correlations between puffin productivity and SST correspond to the early 20th century Arctic warming period and to the most recent decades. Most of the variation (72%) in chick production is explained by a model in which productivity peaks at an SST of 7.1 °C, clearly rejecting the assumption of a linear relationship. There is also evidence supporting non-stationarity: the SST at which puffins production peaked has increased by 0.24 °C during the 20th century, although the increase in average SST during the same period has been more than three times faster. The best supported models indicate that the population’s decline is at least partially caused by the increasing SST around Iceland

    The chemical basis of a signal of individual identity: shell pigment concentrations track the unique appearance of Common Murre eggs.

    Get PDF
    In group-living species with parental care, the accurate recognition of one's own young is critical to fitness. Because discriminating offspring within a large colonial group may be challenging, progeny of colonial breeders often display familial or individual identity signals to elicit and receive parental provisions from their own parents. For instance, the common murre (or common guillemot: Uria aalge) is a colonially breeding seabird that does not build a nest and lays and incubates an egg with an individually unique appearance. How the shell's physical and chemical properties generate this individual variability in coloration and maculation has not been studied in detail. Here, we quantified two characteristics of the avian-visible appearance of murre eggshells collected from the wild: background coloration spectra and maculation density. As predicted by the individual identity hypothesis, there was no statistical relationship between avian-perceivable shell background coloration and maculation density within the same eggs. In turn, variation in both sets of traits was statistically related to some of their physico-chemical properties, including shell thickness and concentrations of the eggshell pigments biliverdin and protoporphyrin IX. These results illustrate how individually unique eggshell appearances, suitable for identity signalling, can be generated by a small number of structural mechanisms.& 2019 The Author(s) Published by the Royal Society. All rights reserved. This document is the authors' final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    Complex population structure of the Atlantic puffin revealed by whole genome analyses

    Get PDF
    The factors underlying gene flow and genomic population structure in vagile seabirds are notoriously difficult to understand due to their complex ecology with diverse dispersal barriers and extensive periods at sea. Yet, such understanding is vital for conservation management of seabirds that are globally declining at alarming rates. Here, we elucidate the population structure of the Atlantic puffin (Fratercula arctica) by assembling its reference genome and analyzing genome-wide resequencing data of 72 individuals from 12 colonies. We identify four large, genetically distinct clusters, observe isolation-by-distance between colonies within these clusters, and obtain evidence for a secondary contact zone. These observations disagree with the current taxonomy, and show that a complex set of contemporary biotic factors impede gene flow over different spatial scales. Our results highlight the power of whole genome data to reveal unexpected population structure in vagile marine seabirds and its value for seabird taxonomy, evolution and conservation

    Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird

    Get PDF
    Which factors shape animals’ migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species’ range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins’ among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    No full text
    Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of 6 pelagic seabird species (little auk Alle alle, Atlantic puffin Fratercula arctica, common guillemot Uria aalge, Brünnich’s guillemot U. lomvia, black-legged kittiwake Rissa tridactyla and northern fulmars Fulmarus glacialis). We analysed an extensive geolocator positional and saltwater immersion dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the saltwater immersion data of geolocators to infer bird activity. We found that the 6 species had, on average, 3 to 4 migration periods and 2 to 3 distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a ‘fly-and-forage’ migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling
    corecore